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INFLUENCE OF THE AQUEOUS-PHASE PRESSURE ON THE FREEZING 

AND THAWING OF PORE MOISTURE IN HIGHLY DISPERSE MEDIA 

R. I. Medvedskii UDC 536.42:551.34 

The freezing and thawing of sandy (frozen) rock is considered, taking account of 
the temperature and pressure correlation at the phase-transition front. 

To ensure reliable construction and operation of boreholes in extreme northerly regions, 
it is necessary to know the laws of rock freezing. In some models of highly disperse media, 
for example sandy loam, sand, sandstone, thawing and freezing are described by the Stefan 
problem [i, 2], in which the existence of a smooth frontal surface between two phases of pore 
water - liquid and solid - is assumed. The temperature at the front is usually assumed to 
be constant throughout the whole period of development of the process. However, in situa- 
tions that are of practical interest, it is common to determine the pressure in the liquid 
phase, which is transmitted there from outside or created there because the front displaces 
the water excess as a consequence of the density difference between the two phases. In a 
limited volume of water phase, the pressure arising on freezing may contort the borehole 
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column [3, 4]. If the volume of water phase is not closed, the pressure is determined by the 
filtrational characteristics of the porous medium. 

Investigation of the Stefan problem for water evaporation, taking account of the depend- 
ence of the temperature on the pressure at the phase-transition front, reveals [5, 6] a series 
of interesting effects. It is natural to use an analogous approach in investigating phase 
transition at the liquid-solid boundary. 

Of the many problems of this type arising in practice, the three considered below share 
a common method of solution and character of occurrence of the process (plane-parallel symmetry 
in heat and liquid transmission and also the simplest boundary conditions, permitting a self- 
similar formulation). 

It is assumed here that, with increase in pressure on the ice, its melting point will 
decrease in accordance with the Clausius-Clapeyron equation. With change in pressure to i000 
bar, this dependence may be regarded as linear without great error 

Pm--Po= p ( T n , ) - - p ( T o )  = 8(T0- -  Tin), 6 = 1 3 4  bat/K, ( 1 )  

where P0 and T O are the pressure and temperature in standard conditions. 

In addition, it is taken into account that in a system consisting of water and ice the 
additional formation of ice in the volume VI leads to increase in water volume by an amount 
bVl; A = (PW - Pl)/PW. In the inverse process - melting of ice in the volume VI - the water 
in the system decreases by the same amount AVI; pW, Pl are the densities of water and ice, re- 
spectively, and are assumed to be constant below. 

i. The first problem investigated concerns the increase in pore pressure under the phase- 
transition front with omnidirectional freezing of a completely water-saturated porous medium 
occupying the half-space x > O. The permeability k and porosity m of the medium are regarded 
as constant, as are the water viscosity ~ and the compressibility of the pore space ~ in the 
water-saturated part of the medium. The frozen zone which forms is regarded as undeformable. 
It is also assumed that the thermal conductivity li and thermal diffusivity ~i (i = O, i) do 
not change within the limits of the thawed and frozen zones. The temperature Ts at the sur- 
face of the half-space x = 0 remains constant throughout the whole process, and the temperature 
Tm at the phase-transition front with current coordinate xm(t) changes only as a function of 
the pressure Pm directly beneath the front. 

The temperature distribution in the zones of the growing (0 ~ x ~ Xm) and initial (Xm 
x 8 ~) phases may be described by linear heat-conduction equations 

O~TI OTt O~To OTo 

~ Ox ~ Ot Ox ~ Ot 

w i t h  i n i t i a l  and b o u n d a r y  c o n d i t i o n s  

.x = 0  T , - -  Ts; x = oo To;=- Ti; t==0 T0=; T~; x~;.(0) =0 ;  

x : xm (t) T~ : :  T o :  Tin; --%10T---L- =:mPw L Ox,~ )~o OTo 
" Ox Ot Ox 

In the water-saturated zone, the change in filtration potential ~ = p + pWgx is deter- 
mined by the piezoconduction equation 

a2~p O~p k 
- -  - -  , ~ - 

0• 2 Ot pf~ 

w i t h  t h e  i n i t i a l  c o n d i t i o n  ~ ( x ,  O) = q i  = P0 + PwgX. 

The a d d i t i o n a l  c o n d i t i o n  f o r  s o l v i n g  t h e  h e a t - c o n d u c t i o n  e q u a t i o n s  s p e c i f i e s  t h e  f i l t r a -  
t i o n  rate at the freezing point 

k O~p - - A m  dx~ 
X : :  X m - -  " - -  

I~ Ox dt 

T h i s  p r o b l e m  r e d u c e s  t o  s e l f - s i m i l a r  f o r m  by means  o f  t h e  B o l t z m a n n  s u b s t i t u t i o n  ~ = 
x / 2 q ~ - l t .  The t e m p e r a t u r e  d i s t r i b u t i o n  i n  t h e  z o n e s  o f  g r o w i n g  ( i  = l )  and  i n i t i a l  ( i  = 0)  
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phases is expressed in terms of the error function erf $ and the complementary function cerf 
in the following form: 

T~- -T , ,~  - 1 - -  erf~, ,  7',,~--Ti . . . . . . .  1-~- cerf~]/'~" 
T~ --- T~ erf ~m T~ - -  T,,~ cerf ~,~ ]/~-' 

[ ~__ (Zt 
~o 

where ~m = Xm/2 ~vr-~it; Xm = 2~lt, and the constant %, which characterizes the law of front 
motion, is determined from the heat-balance equation at the front. Then 

K, Ko 
Y~ (k) Jo (k~) 

k~(Tm--Ts) 
~ i~wL m 

1 Ji (k)= b / F @  e~/2 err ~ /  ---~--k, 

The functions introduced here are useful in solving self-similar problems of Stefan type as 
a result of the simple approximations found in this case 

, No- ko(Tm--Yi) , 
GCtPV~m 

a e~/2cerf j /  1 ;o O0 = - F f -  -~-k. 

(2) 

1 r 1 
Y~ (;9 --~ 1 -~- ~ ~,e~/2; 

1 2 
Jo (k) 

V (_~. - )2 (_._~.._)2 2 k-i- --i k . 

The Boltzmann substitution for the piezoconduction equation leads to the following ex- 
pression for the pressure increase at the phase-transition front: 

pro--  po = M;~ZYo (;~o O, ( 3 ) 
Po 

% M - -  m A .  

• ~po 

Thus, three equations - Eqs. (1)-(3) - are found for determining three unknowns: X, 
Pm, and Tm. They are found most simply by the method of successive approximation. Thus, 
specifying an appropriate value of Tm, the parameters K l and K 0 are determined; then the root 
of Eq. (2) is found and hence the increase in pressure at the front according to Eq. (3). 
Then the next approximation for Tm is found from Eq. (i) and the successive-approximation 
procedure is repeated until the v~lue of Tm obtained coincides with that in the previous iter- 
ation, within the limits of the specified error. 

The pressure increment at the phase-transition front is estimated as a function of the 
bed permeability with the following parameter values (Fig. i): thermal conductivity in the 
thawed and frozen zones 1.75 and 2 W/m'K, respectively; thermal diffusivity in the same zones 
0.9-10 -~ and 0.6.10 -s m2/sec, respectively; latent heat of phase transition 331.6.103 J/kg; 
bed porosity m = 0.2; effective compressibility of the pore space $ = 5.10 -s bar-l; density 
of ice and water PI = 917 and PW = 997.97 kg/m3; water viscosity p = 10 -3 Pa.sec; initial 
bed temperature 2~ temperature at surface Ts = -5~ 

A sandy bed corresponds to k ~ 10 -3 ~m2. The pressure increment at the front is slight 
in this case and has virtually no influence on the phase-transition temperature. Therefore, 
there is no need to repeat the iteration. 

The need for the iterative process only arises when the permeability of the medium is 
slight. Physically, this corresponds to the case when the sink region is partitioned off 
from the freezing sandy bed by a water-tight barrier of permeability k = 10 -3 ~m 2. In view 
of the small filtrational resistance in the sandy bed itself, the same formulas may be used 
to determine Ap = Pm = P0- 

545 



/02 

I 

/0! 
\ 
\ 
\ 

Fig. i. Pressure increment Ap at freezing 
front as a function of permeability of 
disperse medium k. 

TABLE i. Values of a = r Eq. (2) 

Ps, bar T m, oC K1 - -Ko a a/ao AT, ~ 

0 
134,3 
268,4 
403,2 

0 
--1 
--2 
--3 

0,0477 
0,0954 
0,1431 
0,1908 

--0,0273 
0,0273 
0,0819 
0,1365 

O, 149 
0,225 
0,285 
0,341 

1 
1,51 
1,91 
2,29 

0 
3,2 
4,6 
6,3 

Freezing of beds with low permeability or at very small depths may occur with deforma- 
tion of the roof, which breaks apart the soil grains and fills the intervening space with 
ice. Thus, within the limits of massive cryogenic texture, swelling of the soil occurs, with 
the formation of excess ice beyond the limits of the pore volume in the thawed state. In 
the case of a barrier positioned close to the earth's surface, deformation of the roof may 
appear in disruptive dislocations at the weakest points. This may possibly be the explanation 
for the natural process of the emergence of ice columns from the earth, which has sometimes 
been observed. On reaching a height of 3-5 cm, such columns usually tip over, revealing a 
channel filled with wet soil. The narrow channel rapidly freezes, forming another column, 
and increase in pressure beneath it culminates in the expulsion also of this column. 

Conversely, in the presence of sink regions, which are thawed regions under the banks 
of rivers and the beds of lakes, when the permeability of the sand is not too small, freezing 
to great depths will occur without deformation of the roof and the formation of excess ice. 
This conclusion is confirmed by investigating the core removed from seven special boreholes 
in the Medvezh'ii and Urengoiskii fields. 

2. Now consider the melting of pore ice in a horizontal sandy bed with specified values 
of the temperature Ts and pressure ps at the end surface x = 0. This situation arises, for 
example, when water leaks through the nonhermetic columnar space of a borehold from a deep- 
lying stratum in the frozen-rock interval. The other assumptions made are the same as in 
the preceding problem. However, in contrast to that problem, the growing phase here is water 
and the initial phase is ice in the pore space. 

The temperature distribution in each of the zones is represented by the same functions, 
and the filtration potential satisfies the same piezoconduction equation. Since the bed is 
horizontal, this potential may be identified with the pressure, the distribution of which 
in the zone 0 5 x 5 Xm(t) is determined by the following function, in view of the assumptions 
adopted: 

p =  ps - - (P~- -pm)er f  x / e r r  x., 
2V.~-/- 2V.~- f . (4 )  

I t  f o l l o w s  f rom t h e  r e q u i r e m e n t  t h a t  t h i s  f u n c t i o n  s a t i s f y ,  as  b e f o r e ,  t h e  c o n d i t i o n  o f  ma tch-  
ing  o f  t h e  two f i e l d s  ( t e m p e r a t u r e  and p r e s s u r e )  a t  t h e  moving f r o n t  xm = 2v~-~-lt t h a t  

P~-- P'~ --  M ~ J ~  ( ~ ) .  ( 5 )  
Po 

Here X satisfies the same equation, Eq. (2), in which 

K i -  ~ (T~-- T~) ," Ko ~o (Tin-- Ti) 
alPlLm a~PILm 
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Finally, three equations - Eqs. (I), (2), and (5) - are obtained for determining the 
three unknowns I, Pm, and Tm. This system is solved by the method of successive approximation. 

The results of solution for a bed with permeability k = 200 ~m z and water temperature 
Ts = I~ at the inlet, with various pressures Ps, are shown in Table I. The initial bed tem- 
perature is taken to be Ti = -0.50C, while the other parameters are the same as before. 

For comparison with the solution of the Neumann problem, the first row in Table 1 gives 
the value of a = ~X-~ when there is no excess pressure on the bed. The quantity a/a0 is the 
increase in melting rate of the pore ice under pressure in comparison with the melting rate 
under ordinary conditions. In the last column, the increase in temperature at the inlet sur- 
face of the bed required in the melting of ice without the application of pressure to the 
liquid phase in order to obtain the same effect is shown. 

Investigations show that melting of pore ice under pressure occurs fairly rapidly. Note 
that, in the given problem, the melting point may be less than the~ initial value, i.e., Tm < 
Ti, and hence the heat flux from both zones is directed toward the front. This distinguishes 
the present problem from the classical Neumann problem, in which the heat flux is directed 
only in one direction. However, whereas in the Neumann problem the solution of Eq. (2) is 
possible with any values of K i and K0, when Tm < Ti, Eq. (2) only has a solution when K0~ < 1 
but for any Ki, including K i = 0. This is important for the solution of the next problem. 

3. Now consider the case when the borehole is surrounded by a deep cavern, in the cross 
section of which there is a sandy bed; the pores of this bed are initially filled with ice. 
The cavern is constantly filled with water. In winter, half the cavern freezes and is sealed 
off by an ice plug of variable thickness x0(t) (Fig. 2). Suppose that the mean ambient tem- 
perature in winter is Ta and the initial temperature of the sandy bed is Ti: Ta < Ti < 0~ 
On account of the growth of the ice layer at the earth's surface the pressure in the cavern 
rises, reaching a value Ps which exceeds the equilibrium value for temperature Ti. For this 
reason, melting of the pore ice at temperature Tm occurs in the sandy bed at a front with a 
velocity determined by the intensity of heat input from the ice. 

In this problem, the cavern is assumed to be plane, the pliability of its walls is com- 
pletely neglected, and the assumptions regarding the horizontal sandy bed are as before. Under 
these assumptions, the steady pressure in the cavern Ps is found. It is larger than Pm at the 
front by an amount due to the filtrational resistance in the thawed part of the bed 0 ~ x 
Xm(t). 

A constant pressure in the cavern is obviously established in the case where the volume 
of the water excess generated at the lower end of the ice plug sealing the neck of the cavern 
is equal to the volume filtering in the bed, i.e., the following condition must hold: 

Ao A dxo _ A k Op f (6) 
dt ~ Ox ~=o' 

where A 0 and A are the cross-sectional areas of the cavern neck and the inlet surface of the 
sandy bed, while p(x, t) is the pressure distribution in the thawed part of the bed. 

Assuming a steady pressure distribution over the height of the ice plug and also a steady 
temperature there, the Leibenzon method gives 

/ hi(Tin-- Ta) t. (7) 

As may readily be established, this problem is self-similar. Then the pressure distribu- 
tion in the thawed part of the bed is specified by Eq. (4), the front motion is determined 
by the law xm = 2/~-~0t, and the constant I is the solution of the transcendental equation 

%o (Ti-- Tin) 
/;o - ~Jo (~), Ko.= ( 8 )  

ao~ Lm 

After minor manipulations, the following equation is obtained from Eqs. (6) and (7): 
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Fig. 2. Freezing of water in a cavern surrounding a bore- 
hole with simultaneous thawing of the pore ice in a sandy 
bed: i) ice; 2) water; 3) borehole column; 4) borehole 
axis. 

Fig. 3. Pressure in cavern as a function of the area 
ratio of the neck and the inlet surface of a sandy bed with 
a permeability k = 200 pm 2. 

Ao ~2 ~ T~--Ta _ k a , e ~ ,  ' ~ , =  ~ o  
m A  ] ~ pL •  (9) 

which, together with gq. (8), allows the unknowns k and Tm to be determined. The solution may 
be somewhat simplified if the unknown temperature at the front and in the cavern Tm is elimin- 
ated from Eqs. (8) and (9). Then the following equation is obtained for determining X: 

Ka= ~ [Jo (~,) ~- N e ~ ' a ' ] ,  

Ka- )~o(Ti--Ta) N = (  m A  'i 2 k,o p.~ (10) 

The results of the calculations with Ta = -10~ Ti = -2~ and the above-noted values of 
the other thermophysical parameters are shown in Fig. 3 for various A0/A. 

In real situations, the case A >> A 0 is observed and, as is evident from the calculations, 
the equilibrium temperature, and hence the equilibrium pressure in the cavern, approach values 
characteristic of a sandy bed with an initial temperature Ti. Therefore, freezing of deep 
caverns in winter is practically never accompanied by contortion of the column, as noted in 
borehole-drilling practice in the north of the Tyumen' region and the Krasnoyarsk region. 

NOTATION 

p, pressure; T, temperature; V, volume; p, density; 6, coefficient in Clausius-Clapeyron 
equation; A, relative increment in water volume on phase transition; %, thermal conductivity; 
~, thermal diffusivity; m, porosity; k, permeability; 4, piezoconduction; ~, viscosity; g, 
acceleration due to gravity; ~, X, K, x0, p, M, dimensionless parameters. Indices: i, new 
phase; 0, initial phase; W, water; I, ice; m, phase-transition boundary. 
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HEAT AND MASS TRANSFER IN COMMERCIAL DESORBERS WITH A HEATING SURFACE 

IN THE FORM OF A VERTICAL TUBE BUNDLE 

AND A THERMOFLUIDIZED HEAT-CARRIER BED 

A. P. Nesenchuk, A. M. Gabri~l', E. N. Antonishina, 
V. A. Sednin, A. A. Sklyar, and L. V. Shaton 

UDC 66.096.5 

A mathematical model is presented of heat and mass transfer in a thermofluidized 
bed in the thermal regeneration of synthetic zeolites. Theoretical data are com- 
pared with experimental results. 

This article is a continuation of the work done in [i, 4] on the use of thermofluidiza- 
tion to intensify heat and mass transfer in the regeneration of synthetic zeolites of CaA, 
MgA, and other aluminates in processing equipment at machine-building plants. 

The regime of thermofluidization of a flow of disperse sorbent during its heating begins 
when evolution of the gaseous sorbate becomes so intense that the velocity of the gas phase 
exceeds the initial fluidization velocity. The properties of the disperse flow change abrupt- 
ly at this moment, mixing becomes intense, and there is a significant increase in the effec- 
tive thermal conductivity of the bed in the thermofluidization zone. It is difficult to cal- 
culate the thermofluidization regime due to the nonlinearity of the corresponding model. 

Here we use a model of a descending flow moving past a vertical cylindrical heater. We 
use the approximation that the medium is continuous and has effective properties which model 
dense and thermofluidized flow. The numerical solutions obtained can then be used to obtain 
an engineering optimization of commercial units to extract carbon dioxide and other gaseous 
sorbates from a gas suspension. 

We will examine an annular vertical channel (Fig. i) R0 with a cylindrical internal heater 
of radius r0. The rectangular region BCDE and its longitudinal section are the two-dimensional 
calculation region, with the coordinate origin at point A. A zeolite flow G crosses section 
BC with a specified degree of adsorption ao and an initial temperature T0o The boundary CD 
is thermally insulated and nonpermeable to the gas and solid phase. The boundary BE is heated 
by the heat flow Q and is also nonpermeable. The porosity e 0 on the boundary DE is equal 
to the porosity of the dense flow (e 0 = 0.4), since there is a gas seal here and gas evolution 
is directed upward toward section BC. The gas flow increases during ascent and, beginning 
at a certain section, the bed of sorbent is fluidized. 

The sought functions are: the temperature of the flow T(r, X), the porosity of the flow 
~(r, X), and the degree of adsorption a(r, X). 

In the approximation of a continuum with uniform adsorption and a negligibly short ther- 
mal relaxation time, the flow is described by the system of equations (in the region r 0 S r 
R0; 0 ~ X ~ X0): 
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